Generative Adversarial Networks (GANs)

Lists

Name Paper Link Value Function
GAN Arxiv
LSGAN Arxiv
WGAN Arxiv
WGAN-GP Arxiv
DRAGAN Arxiv
CGAN Arxiv
infoGAN Arxiv
ACGAN Arxiv
EBGAN Arxiv
BEGAN Arxiv

Variants of GAN structure

Results for mnist

Network architecture of generator and discriminator is the exaclty sames as in infoGAN paper.
For fair comparison of core ideas in all gan variants, all implementations for network architecture are kept same except EBGAN and BEGAN. Small modification is made for EBGAN/BEGAN, since those adopt auto-encoder strucutre for discriminator. But I tried to keep the capacity of discirminator.

Random generation

All results are randomly sampled.

Name Epoch 2 Epoch 10 Epoch 25
GAN
LSGAN
WGAN
WGAN-GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 10 Epoch 25
CGAN
ACGAN
infoGAN

InfoGAN : Manipulating two continous codes






Results for fashion-mnist

Comments on network architecture in mnist are also applied to here.
Fashion-mnist is a recently proposed dataset consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)

Random generation

All results are randomly sampled.

Name Epoch 1 Epoch 20 Epoch 40
GAN
LSGAN
WGAN
WGAN-GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 20 Epoch 40
CGAN
ACGAN
infoGAN

Without hyper-parameter tuning from mnist-version, ACGAN/infoGAN does not work well as compared with CGAN.
ACGAN tends to fall into mode-collapse.
infoGAN tends to ignore noise-vector. It results in that various style within the same class can not be represented.

InfoGAN : Manipulating two continous codes






Some results for celebA

(to be added)

Variational Auto-Encoders (VAEs)

Lists

Name Paper Link Loss Function
VAE Arxiv
CVAE Arxiv
DVAE Arxiv (to be added)
AAE Arxiv (to be added)

Variants of VAE structure

Results for mnist

Network architecture of decoder(generator) and encoder(discriminator) is the exaclty sames as in infoGAN paper. The number of output nodes in encoder is different. (2x z_dim for VAE, 1 for GAN)

Random generation

All results are randomly sampled.

Name Epoch 1 Epoch 10 Epoch 25
VAE
GAN

Results of GAN is also given to compare images generated from VAE and GAN.
The main difference (VAE generates smooth and blurry images, otherwise GAN generates sharp and artifact images) is cleary observed from the results.

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 10 Epoch 25
CVAE
CGAN

Results of CGAN is also given to compare images generated from CVAE and CGAN.

Learned manifold

The following results can be reproduced with command:

1
python main.py --dataset mnist --gan_type VAE --epoch 25 --batch_size 64 --dim_z 2

Please notice that dimension of noise-vector z is 2.

Name Epoch 1 Epoch 10 Epoch 25
VAE

Results for fashion-mnist

Comments on network architecture in mnist are also applied to here.

The following results can be reproduced with command:

1
python main.py --dataset fashion-mnist --gan_type <TYPE> --epoch 40 --batch_size 64

Random generation

All results are randomly sampled.

Name Epoch 1 Epoch 20 Epoch 40
VAE
GAN

Results of GAN is also given to compare images generated from VAE and GAN.

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 20 Epoch 40
CVAE
CGAN

Results of CGAN is also given to compare images generated from CVAE and CGAN.

Learned manifold

The following results can be reproduced with command:

1
python main.py --dataset fashion-mnist --gan_type VAE --epoch 25 --batch_size 64 --dim_z 2

Please notice that dimension of noise-vector z is 2.

Name Epoch 1 Epoch 10 Epoch 25
VAE