Image Classification

Must Read : LeNet, AlexNet, VGG-16, GoogleNet, ResNet

Title Authors Pub. Links Figure
LeNet-5, convolutional neural networks Y. LeCun ??? 199X Web
LeNet
LeNet
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky,Ilya Sutskever,Geoffrey E. Hinton NIPS 2014 paper
AlexNet
AlexNet
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan, Andrew Zisserman ICLR 2014 paper
VGG16
VGG16
Going Deeper with Convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed CVPR 2015 paper
GoogLeNet
GoogLeNet
Deep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun CVPR 2016 best paper github
ResNet
ResNet
Residual Attention Network for Image Classification Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang CVPR 2017 paper github
Res-Attention-Network
Res-Attention-Network
Aggregated Residual Transformations for Deep Neural Networks Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He CVPR 2017 paper github
ResNeXt
ResNeXt
Densely Connected Convolutional Networks Gao Huang, Zhuang Liu, Kilian Q. Weinberger CVPR 2017 best paper github
DenseNet
DenseNet
Deep Pyramidal Residual Networks Dongyoon Han, Jiwhan Kim, Junmo Kim CVPR 2017 paper github
PyramidNet
PyramidNet

Object Detection

Must Read : R-CNN, Fast R-CNN, Faster R-CNN, YOLO, SSD

Title Authors Pub. Links Figure
Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik CVPR 2014 paper github
R-CNN
R-CNN
Fast R-CNN Ross Girshick ICCV 2015 paper github
Fast-R-CNN
Fast-R-CNN
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun TPAMI 2015 paper
SPP Net
SPP Net
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun NIPS 2015 paper matlab python pytorch
Faster-R-CNN
Faster-R-CNN
You Only Look Once: Unified, Real-Time Object Detection Joseph Redmon,Santosh Divvala,Ross Girshick, Ali Farhadi CVPR 2016 paper
YOLO
YOLO
SSD: Single Shot MultiBox Detector Wei Liu1, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg CVPR 2016 paper
SSD
SSD
Convolutional Feature Masking for Joint Object and Stuff Segmentation Jifeng Dai, Kaiming He, Jian Sun CVPR 2015 paper
CFM
CFM
Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai, Kaiming He, Jian Sun CVPR 2016 paper github
MNC
MNC
R-FCN: Object Detection via Region-based Fully Convolutional Networks Jifeng Dai, Yi Li, Kaiming He, Jian Sun NIPS 2016 paper github
Region-FCN
Region-FCN
Feature Pyramid Networks for Object Detection Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie CVPR 2017 paper
FPN
FPN
Mask R-CNN Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick ICCV 2017 paper
Mask-R-CNN
Mask-R-CNN
A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection Xiaolong Wang, Abhinav Shrivastava, Abhinav Gupta CVPR 2017 paper github
A-Fast-R-CNN
A-Fast-R-CNN
Multiple Instance Detection Network with Online Instance Classifier Refinement Peng Tang, Xinggang Wang, Xiang Bai, Wenyu Liu CVPR 2017 paper
MIDN
MIDN
R-FCN-3000 at 30fps: Decoupling Detection and Classification Bharat Singh, Hengdou Li, Abhishek Sharma and Larry S. Davis Tech Report paper
R-FCN-3000
R-FCN-3000

Semantic Segmentation and Scene Parsing

Must Read : FCN, Learning Deconvolution Network for Semantic Segmentation, U-Net

Title Authors Pub. Links Figure
Fully Convolutional Networks for Semantic Segmentation Jonathan Long, Evan Shelhamer, Trevor Darrell CVPR 2015 paper
FCN
FCN
Learning to Segment Object Candidates Pedro O. Pinheiro, Ronan Collobert, Piotr Dollar NIPS 2015 paper
LSOC
LSOC
Learning to Refine Object Segments Pedro O. Pinheiro , Tsung-Yi Lin , Ronan Collobert, Piotr Doll ́ar arXiv 1603.08695 paper
LROS
LROS
Conditional Random Fields as Recurrent Neural Networks Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, ZhiZhong Su, Dalong Du, Chang Huang, and Philip H. S. Torr ICCV 2015 paper
CRFRNN
CRFRNN
Learning Deconvolution Network for Semantic Segmentation Heonwoo Noh, Seunghoon Hong, Bohyung Han ICCV 2015 paper
LDN
LDN
U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger, Philipp Fischer, Thomas Brox MICCAI 2015 paper
U-Net
U-Net
Instance-sensitive Fully Convolutional Networks Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, Jian Sun ECCV 2016 paper
ISFCN
ISFCN
Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation Golnaz Ghiasi, Charless C. Fowlkes ECCV 2016 paper github
LPRR
LPRR
Attention to Scale: Scale-aware Semantic Image Segmentation Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu CVPR 2016 paper DeepLab
Attention-to-scale
Attention-to-scale
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation Guosheng Lin, Anton Milan, Chunhua Shen, Ian Reid CVPR 2017 paper github
RefineNet
RefineNet
Pyramid Scene Parsing Network Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia CVPR 2017 paper github
PSPNet
PSPNet
ICNet for Real-Time Semantic Segmentation on High-Resolution Images Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia Tech Report paper
ICNet
ICNet
Dilated Residual Networks Fisher Yu, Vladlen Koltun, Thomas Funkhouser CVPR 2017 paper github
DRN
DRN
Fully Convolutional Instance-aware Semantic Segmentation Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, Yichen Wei CVPR 2017 paper github
FCIS
FCIS
Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes Tobias Pohlen, Alexander Hermans, Markus Mathias, Bastian Leibe CVPR 2017 paper github
FRRN
FRRN
Object Region Mining with Adversarial Erasing: A Simple Classification toSemantic Segmentation Approach Yunchao Wei, Jiashi Feng, Xiaodan Liang, Ming-Ming Cheng, Yao Zhao, Shuicheng Yan CVPR 2017 paper
A-Erasing
A-Erasing
Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, Xiaoou Tang CVPR 2017 paper
Not-All-Pixels-Are-Equal
Not-All-Pixels-Are-Equal
Semantic Segmentation with Reverse Attention Qin Huang, Chunyang Xia, Wuchi Hao, Siyang Li, Ye Wang, Yuhang Song and C.-C. Jay Kuo BMVC 2017 paper code
Rev-Attention
Rev-Attention
Predicting Deeper into the Future of Semantic Segmentation Pauline Luc, Natalia Neverova, Camille Couprie, Jakob Verbeek and Yann LeCun ICCV 2017 paper project page
Deeper-into-Future
Deeper-into-Future
Learning to Segment Every Thing Ronghang Hu, Piotr Dollar, Kaiming He, Trevor Darrell, Ross Girshick Tech Report paper
Seg-Everything
Seg-Everything

Regularization

  • Dropout- A Simple Way to Prevent Neural Networks from Overfitting
  • Batch Normalization- Accelerating Deep Network Training by Reducing Internal Covariate Shift

RNN

  • Generating Sequences With Recurrent Neural Networks
  • Word embedding
  • Distributed Representations of Words and Phrases and their Compositionality

Image captioning

Show and Tell: A Neural Image Caption Generator
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention